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We obtain a theorem for expansion of an arbitrary function into an integral in terms of as-
sociated spherical functions, which finds use in solving the boundary value problems of the
mathematical physics and the theory of elasticity, for hyperboloids of revolution of one
sheet.

1. Introduction. Let us consider the integral expansions of the form
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where ¢ J'(x) and ¢,," (x) denote, respectively, the even and odd combination of the spheri=
cal functions with imaginary arguments
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PJ" (z) is the Legendre function and ["(z) denotes the gamma function. Empty sums appea-
ring in (1.1) when m = 0 and in (1.2) when m = 0 and m = 1 are assumed, as usual, equal to
zero, and in these cases the expansions contain only the integral temm,

Formulas of this type are of interest for reasons stated at the beginning of this paper,
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and for & certain narrow class of functions they can be deduced from the general theory of
expansions in temms of the characteristic functions [1 and 2},

Our previous paper [3] gives the direct proof of the relations {1.1) and (1.2) for the case
m = 0. In this paper we attempt to extend the method given in [3] to the general case (*) of
arbitrary integral values of m.

The results are given in the form of a theorem.

Theorem. Let f(x) be a given function defined on the interval (0, o) and satis-
fying the following conditions:

1) The function f(x) is piecewise continuous and has a bounded variation in the open
interval (0, o),

2) The function

f@ L0, a), f@ahin(l +-2)L@ o) (@>0

Then f(x) can be represented by the formula (1.1) or (1.2) for any x which is not a dis-
continuity.

Further, the function f{(x) defined on the interval {— o, =) and satisfying the following
conditions:

1) The function f(x) is piecewise continuous and has a bounded variation in the open
interval (- oo, 00),

2) The function

f(@) |z 1n (1 + |z]) EL (—o0, —a)

f@r*n( +r)esLa ) @>0
can be represented by an analogous formula containing the functions ¢, ™(x) and ¢ " (x).

This expression can easily be obtained using Formulas (1.1) and (1.2) in which f(x) is
replaced by the following combination of an even and odd function

f@) =Y [f (@) +f (=) - [f (2) — f(=2)]

2. Estimates and asymptotic representations of spherical func-
tions. Proof of the expansion theorem is based on certain properties of the functions
¢‘,m(x) and ([;vm (x), which can be deduced from the expressions giving the spherical func-
tions in terms of the hypergeometric series.

Since the proofs of (1.1) and (1.2) differ from each other only in insignificant details,
we shall only consider the even case, using two representations of the function ¢, (x)
following from the definition of the Legendre functions PJ™ (2) (see e.g. [5]). the rirsy rep-

resentation is - .
Vi (2 4 17
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and it shows that the function qum(x) is continuous in x over the interval {0, o) and, that
it is an entire function of the parameter v.
The second representation is
T (34— Yfam + Yav) (72 + 1)~
2™V (4 -+ V) T (¥ + Yam — Yav)

" (z) =

*) The case m =0 corresponds to the hamonic boundary value problems for a hyperboloid
of one sheet, in which the required function is independent [4] of the polar angle ¢.
When the required function is an arbitrary periodic function of ¢5, we have a general case
of integral m, and the method of separation of variables leads to the Sturm-Liouville
problem with a mixed spectrum consisting of the interval (1/4, oc) and a finite number of
negative eigenvalues.
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where F (a, b, ¢, x) is a hypergeometric function. This formula enables us to obtain the es-
timates for ¢, , required in the proof of (1.1). Before anything else, we shall note that,
when 6 < ¥ < 1 and Re v > 0, we have (¥}

m
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which, in turn, gives for 0 < x < oo, 0 < T < oo,
Qi (2)=0 (1) g (x) (2.3)
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and the estimate is uniform in 7 over any interval (0, 1),
Considering the behavior of hypergeometric fanctions as x +» oo we find, that
E@D=0(1),0<z<a),g@ =0z "Il +2)(a<z< o), @>0
Next, using the expansion
1 1 G (2 m)y (a — m) (2.4)
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and esﬁmating the last term of this formula we find ,for 6 <x <1 and Re v > 0,
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which, together with (2.2), yields the following asymptotic formula
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Let us now consider, in addition to qu M(x)}, another fanction y, ™ (x) representing a
linear combination of Lagrange functions of the second kind Q' (z)

0, (2) = (—1)7 s [HQ T (i) + IO (- i)
The latter can be written in terms of the hypergeomstric series

0. (2) = Al (Ve — Yam - Ygw) (22 -+ 1)
¥ 2™ (f 4 v) T (s + Yam - Y/gv)

*) Asymptotic behavior of the gamma function implies that | (3% +m), (% — m)] = 0(1) (%),
(%) 4+ where O is independent of k).
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In addition, it is continuous over the interval {0, «) and is a meromorphic function of v/
with poles at the pointsy=m —% - 2n (n =0, 1, 2,...),
Finally, from the estimates given above it follows, that this function has the following
asymptotic form:

2™ T (1 4 ) T (Y -+ Yorm — 1o - X
AT Yy o b= i+ O (v
x>0, [V} o0, larg v | < Yar (2.9)

Formulas (2.3), (2.5) and (2.9) are sufficient to demonstrate the validity of the Eq. (1.1).
3. Proof of the expansion theorem. Let us consider the integral

2
STy =)= S Tthatl (o m 4+ it) T (o + m— i1) 9.7 (2) dv S f ) @™ () dy
0 0

0<zLo0, T>0 (3.1)
From {2.3) and {2.4) it follows that the inner integral in (3.1) is less than

oG

o {1/ @iy +om§ 1@y i+ vdy
¢ a

therefore, by Conditions 2 of the Theorem, it converges absolutely and uniformly on 7 in
any interval (0, T). Consequently, the expression under the repeated integral in (3.1)(*) is
continuous in 7 and the integral is valid for any T > 0.

Further, the absolute convergence implies, that we can change the order of integration

and write J (T, x) in the form

o0
I, 0=\ {WKG@ v Ty (3.2)
0

2
Kz, 9y, T)= -K—S tthatl (s -+ m - it) T e+ m— i) @™ &) Q. (ydr (33)

9
or, since the integran& is an even function of 7, then

K(z,y, T)=—— S vigavl a+m+ )T (a+m—v) @™ (2) @™ () dv (3.4)
—‘iT
Now, the well known formula
ntg navP l/, (2) = _v..l/, (z)— Q;ﬁ/, (=)
yields

atg v, (@) =o_" (2) — o, (2),
which can be used to transform (3.4) into one of the following two forms

%) We note, that the function ander the inner integral sign is piecewise continuous on the
open interval (0, s), and is continuous in 7 over the interval (0, 7).
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where x is fixed and greater than zero.
Expressions under the integral sign in (3,5) are analytic functions of the complex variable
v, and they have no singularities in the semiplane Re v > 0, except for the finite number
of poles (*)
v=m—1/2—2n n=0,1,2,..[1/2 (m — 1)] (3.6)
Completing the contour of integration on (3.5) with the arc 1", of radius T > m situated
in the semiplane Re v > 0 and applying the residue theorem, we obtain

2
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Tr
[Y2(m—1)]
—= 2 )y v <2)
n=0
2
K@y D= [0t m 9T 0+ m—v) g @) 0™ ) dv—
It
[Y/2(m—1)]
Q)
—— Z‘ {a_y )v=m__.‘/2_,m >z 3.7)
n=0

where
(@_ yom—tfyon=(m—2—20)T @m —20) T 2n + 1) @, 7o (%) Py 1] o (V) (3.8)

Let us denote by K1 (x, ¥, T) and Kz(x, ¥, T) the integrals taken along the contour FT
in {(3.7). Then (3.2) can be written as (*)
x

J (T, 2) =S/(y) Ki(@,y, Ty + f () Ka(e, v, T)dy — (3.9)
(1] x
4 [V/sm—1)] [
A T Em— 20 T 20+ )@, g () § 0O en ()
n=0 0

Let us now investigate the behavior of J (T, x) as T + oo, It follows from (2.5) and (2.9),
1and from the asymptotic formulas for the gamma function that, when |v| -+ co and |argy| <
< Y%m,then

VIl e+ m+v)T (4 m—v) ™ (sha) 9, (sha') =

*) These poles represent the singularities of the function wvm (x) and are situated on the
semiplane Re v > 0. The poles

v=1Y+m-+N@HN=0,1,2, ..)
of the function I" (% + m — v/) cancel with the zeros of » ™ (x) at N = 2p and with the

zeros of o " (x) at N=2p + 1 (p =0, 1, 2,u..) (see Formulas (2.1) and (2.7)).
**) We note that the definition of ¢, (x) readily yields

Uleon @ =0(1) O<T<), O (=01 ™™™, (2>1)

it follows that the integrals under the summation sign converge absolutely.
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Assuming now that
v=Te® (— Yy < @ < Ven)

holds along the arc I, and using (3.10), we find that

, 1 sinfa —a) T sin (o ’
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Snlmequent arguments are anslogous to those given in [3] and are, therefore, omitted.
Lot us now put x = sha and y = sha * in (3.9); using (3,11) we can represent the inte-
grals taken over the intervals (0, x) and (x, ) as sums of other integrals. For example,

x -
S{(y) Ki(z,y, T)dy = S f(sha'yKi(sha, sha’, T)cha da" =
o
1 a. ‘/: 3 . T
= /(sha’) (cc ) smgz‘:’) da’ 4
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&
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From the conditions imposed on the function f(x) we find, in accordance with the Dirich«
let theorem,

3
hm __S”shu)(cha)‘/-sm(a—a)Tda.» 1 fsha—o0)
J oo
The remaining integrals tend to zsero with increasing T {we must, however, adopt a cer-
tain procedure when the integral in question has the difference & — a’ sppearing in the
denominator; a S-neighborhood of @ must be taken and T increased without bounds, with &
kept sufficiently small).



wh

Expansion of an arbitrary function into an integral 427

X
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Similarly, we can show th:t

Jim S ) Ka(@ v, Tydy= 11 @+0) (3.43)
Thus *

limJ (T, 2) =" {f (= +0) + f (¢ —0)] — (3.14)
4 [Ys (%—1)] . . " 0 -
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ich proves the validity of (1.1).
4. Examples. Let us consider the expansion of f(x) = (x2+ 1)"% * (s > ¥). Conditions

of the theorem will be fulfilled, and the expansion (1.1) will therefore exist. Computation

of

the integrals over the variable y can be performed by replacing ¢, ™ (y) with the relevant

expression given by (2.2). The required expansion has the fom

am-1 %
al (fes+am) L (Yas—1/am)

(a2 )" =

[Y2 (m=—1}]
x{z S (m_%_zn)r(n+%>r(m_n)r(%—%+”§‘-—n)x
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X 1‘(;;.—%4—7;) wﬂf.,ﬁ"(z)+g Tth v I‘(\_i-—}-% +i_’2‘_)r(%+’_;__i_;_)x
1]
<)) e
0z oo, s>, m=0,1,2,... (4.1)

A derivation of the potential of a point source in terms of the eigenfunctions of the boun-

dary value harmonic problem for a hyperboloid of revolution of one sheet, can serve as
another example of application of the above theorems, We omit, however, the final expres-

sion in view of its complexity.
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