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We obtain a theorem for expansion of an arbitrary function into an integral in terms of as- 

sociated spherical functions, which finds use in solving the boundary value problems of the 

mathematical physics and the theory of elasticity, for hyperboloids of revolution of one 
sheet. 

1. Introduction. Let us consider the integral expansions of the form 

I% p-l)1 

f(z)= f 2 (m--/2-22n)r(2m-2n)r(2n+l)cp~,,~__zn(r) x 

n=o 
co 03 

x s f (?I) ‘p”,l,*-2,. (y)~~+~~~thnz~(‘/~+m+ir)l‘(l/a+m-it) x 
0 0 

1'/tml--1 

f (5) = ; 23 (~-3ia--~)1'(2~-2n-l)1'(2n+2)~m,,/,~,~(x) x 
n=o 

(O<z<oo; m=o, 1, 2,...) (1.2) 

where r$ r(x) and t,!~,,” (z) “d enote, respectively, the even and odd combination of the spheri- 

cal functions with imaginary argument8 

P? (t) is the Ltgtndre function and r(z) denotes the gamma function. Empty aume apper 

ring in (1.1) when m = 0 and in (1.2) when m I 0 and m = 1 are assumed, as usual, equal to 
ztro, and in these casts the expansions contain only the integral term. 

Formulas of this type are of interest for reasons stattd at the beginning of this paper, 
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and for a certain narrow class of functions they can be deduced from the general theory of 
sxpumion~ in temm of the characteristic fanctions fl and 21. 

our praviou8 pEpsr [3] gi vee the direct proof of the relations (1.1) and (1.2) for the case 
m - 0, in thin paper we attempt to extend ths method given in [a] to the general case (+) of 
ubitrary integral values of m. 

The rstralte are given in the form of a theorem. 
T h e o r t m. Let f(x) be a given function defined on the interval (0,oo) and eatis- 

fyfng the following coaditiona: 
If ‘Iha function f(s) is piacewiae continuous and has a bounded variation in the open 

interval (0, m), 
2) Thg function 

f (5) EL (0, 4, f (z) x-‘/a In (1 + 5) EL (a, 00) (a > 0) 
Than f(x) cm be represented by the formula (1.1) or (1.2) for any x which is not a dia- 

contfnaity. 
Further, the function f(x) dsfined on the interval (- CM, 00 ) and satisfying the following 

conditiona: 
1) The function f(x) is piaawiw continuous and haa a bouaded variation in the open 

interval (- 00, 0). 
2) The function 

f (2) It\-“* In (1 + lzl) EL (-00, -a) 

f (s) ix-‘/* In (1 + 5) EL (a, m) (a>01 
can be represented by an analogous formula containing the functions qS$(zx) and $,m(z>. 

This erpreasion can easily be obtained using Formulas (1.1) and (1.2) in which f(x) is 
replaced by the following combination of an even and odd function 

f (z) = ‘/.J [f (5) + f b--41 + l/z If (4 - f (-41 

2. Eatfmates and asymptotic representations of spherical fuac- 
tloa8. Proof of the expansion theorem is based on certain properties of the functions 

C&“(X) and tj$’ (x) , w ic h h can be deduced from the expressions giving the spherical func- 
tiona in terme of the hypergcometric series. 

Since the proof0 of (1.1) and (1.2) differ from each other only in insignificant details, 
we shall only consider the even cane, ucling two representationa of the function d, m (x) 
following from the definition of the Legendre functions PT (t) (see e.g. [s]). the ksy rep- 
reaentation in 

(2.1) 

and it shows that the function 4/(z) is continuous in x over the interval (0, bo) and, that 

it i8 an entire function of the parameter v. 
The second representation is 

cp,m (5) = 
f (*/4 - lizrn + l/.p) (2% + if” 

Zrn+tr (i -t v) p (V4 + l/*rn - l/& 
X 

+I The case m I 0 corresponds to the harmonic boundary value problems for a hyperboloid 
of one #hear, in which the required function is indepeadent [4] of the polar aagle (b. 
Whea the required fanction io au arbitrary periodic function of Q, we have a general case 
of Megal m, and the method of l eparation of varfables lsado to the Sturm~Lioavflle 
problem with a mixed l peotrum consiatfng of the interval (L/4, an) and a finite number of 
negative eigenvaluee. 
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where F (u, Ir, c, z) is a hypergeometric fimcticncm, Thir formula enablea as to obtain the en- 

thiates for 4, = , rsq&ed in the proof of fr.1). Before anything else, we Ehhrll note that, 
wheti @Ix< I aEd Rtv20t wo have(+~ 

which, f turn, gives for O<r<o, O<T <a~, 

?~T”~3=o(I?P(~~ (2.3) 

(i 

1 1 
.y(z)=(XP + l)-“* F ij-, T, 1, 

JfX1+1 _t- 2 

1 ( 

1 i 1/xv”- x 
- 

2 Jfxs _t- 1 -I-F r* xvi* 21/2a+* 

and the s&mats is nnifonu in 7 over my interval (0, T). 
Cad&ring the bafravior of hyporgeometric fuaction~ as x + 00 we find, that 

g (4 = 0 (11, (0 d = < 4, g (4 = 0 (I) x-*‘*’ In (1 + sf (a < z < 00). (a > 0) 
Next, using the expansion 

aad tstimetfng the fast tew of tbfs fCWEd8 we find ,for 0 < % < 1 and Re v > 0, 

hence * 

F f-tm, ‘i--m, f+v, r)=ff&O(Ivi-1) 
i 

which, to,gdm with (2.2), yields the following asymptotic formala 
2+T (i + v) r (214 + ‘/2m - “/2v) 

r P/4 - %m -I- V2v) 
43,” (sh a) = ( lW v 1 d %4 

Let na now consider, in addition to (6, m(s), another fnnctioo a,,!’ (x) rspranthg a 
linear combination of Lagrange functiona of the second kind g?(r) 

m m’(4= (-ljm I/a Ie”*‘““QY_~(iz) + e+ain”Q,_;,T(- ix)] Y 

The latter cap be wrfttan in terms of the bypergeom8tric ~srfair 

0,” (I) = 
nr f’f* - ygr& + =/*vf (29 + 1 )-*~+z/* 
P+li7 (1 + v) r (‘/a + ‘lam - l/2@ 

X 

*) Asymptctic behavior of the gamma function impliee that I(& + m)& (?4 - m&I pla(l) (I& 
&jr, where 0 is independsat of b). 



In addition, it is continuous over the interval (0, do) and iS a meromdrphic fuaction of II 
with poles at the points v = m - % - 2n {II = 0, 1, 2 ,,.. ). 

Finally, from the estimates given above it follows, that this function has the following 
asymptotic form: 

a>, 0, l~i”-+@J, /argvI<%n (2.9) 

Formulas (2.3), (2.5) and (2.9) are sufficient to demonstrate the validity of the Eq. (1.1). 

3. proof of the expansion theorem, Let us consider the integral 

J (T, 2) = $5 z th 3tzzT (Q -f- m -t_ iz) r (“1.~ t_ m - iz) rpipi+” (cc) f&i f (y) ‘piTrn (y) dy 

0 0 

(‘<x<,, T>O (Xl) 

From (2.3) and (2.4} it follows that the inner integral in (3.1) is leas than 

0 (I) 5 1 f (y) 1 dy -!- 0 (1) r I i (pi) I Y-“’ h(1 -t Y) dY 
0 a 

therefore, by Conditions 2 of the Theorem, it converges absolutely and uniformly on 7 in 
any interval (0, T). Consequently, the expression under the repeated inte& in (3.1)(e) is 
continuous in T and the integral is valid for any T > 0. 

Further, the absolute convergence implies, that we can change the order of integration 
and write 1 (I’, r) in the form 

60 

or, since the integrand is an even function of 7, then 

iT 
1 

K(x, y, T)=- ni s 
v tg nvr ($5 + m + V) r (% + m - V) ‘pvm (4 qvm (Y) dv (3.4) 

-iT 
Now, the well known formula 

yields 
x tg nvP;F,, (2) = O::I,, (2) - Q;?$ (~1 

n tg nvq$“(z) = a_,” (z) - 0,” (r), 

which can be used to transform (3.4) into one of the following two forms 

*) We note, that the function under the inner ink@8i sign is piecewise continuous on the 
open interval (0, OO), and is continuous in 7 over the interval (0, Tf. 
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iT 

K(x, Y, T,=& s Vr (l/2 + m + V) r (l/2 + m - V) a,” (4 ‘pvm (Y) dv (Y d 4 
-iT 

iT 

K(x, Y, T)=& 
s 

VI’ (‘h + m + v) r (% + m - v) ‘pvrn (4 covrn (Y) dv (y >/ x) (3.5) 
-iT 

where z is fixed and greater than zero. 
Expressions under the integral sign in (3.5) are analytic functions of the complex variable 

V, and they have no singularities in the semiplane Re v >, 0, except for the finite number 
of poles (*) 

v = m - 112 - 2n, n = 0, 1, 2, . . . . [i/2 (m - 111 (3.6) 

Completing the contour of integration on (3.5) with the arc r T of radius T > m situated 
in the semiplane Re v >,O and applying the residue theorem, we obtain 

K(x, y, T,=& 
s 

Vr (‘/2 -t m + V) r (l/2 -t- m - V) Ovrn (3) ‘pvm (Y) dV - 

rT 

- -$ [l’*y)’ (U-l )“=m__%_2n (Y <xl 
?I=0 

K (~7 Y, T) =& s VP (l/2 + m + v) r (l/2 + m - V) vvm (4 ovm (Y) dv - 

rT 

- ; rlyl,l (a_l )“=_-‘i*_2n (Y>,X) (3.7) 
n=o 

where 

(a-1 )v=m-~/*--2n = (m - l/9 - 24 r (2m - 24 r (2n + 1) cP,_l/Tu, (4 (pmlrhr (Y) (3.8) 

Let us denote by K t (x, y, T) and K2(.x, y, T) the integrals Men along the contour rT 

in (3.7). Then (3.2) can be written as(*) 

J(T, 4=&4( xr Y, T) dY + 5 f (Y) K2 (~9 Y, T)dy - (3.9) 

0 x 

[‘Mm-111 

-; 2 (m--l/2 - 2n) r(2m-- 2n) IT (2n + 1)(Pm!!i,z_/,-2n (47 f (Y)Vm!?/rs* (Y)dY 
n=o 0 

Let us now investigate the behavior of / (T, x) as T + 00. It follows from (2.5) and (2.9), 
tand from the asymptotic formulas for the gamma function that, when 1 VI + 00 and largvl 5 
I%n,then 

*) These poles represent the singularities of the function w,,” (x) and are situated on the 
semiplane Re v 1 0. The poles 

v = lJz + m + N (N = 0, 1, 2, . ..) 

of the function r(K + m -v) cancel with the zeros of oym (z) at N =.2p and with the 
zeros of +t,m(x) at N = 2p + 1 (p = 0, 1, 2,.+.) (see Formulas (2.1) and (2.7)). 

l *) We note that the definition of &,m(z) readily yields 

it follows that the integrals under the summation sign converge absolutely. 
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V.K-’ I‘ (‘/a ‘t m + V) r (l/s + m - v) $,” (sh a’) cp,* (sh u) = 

i 
(a <a’ < 00 

= 4 l/chacha’ 
{t-f “--I)V + e-(a’+s)v + e-(a’-a)vo (, v p, + e _ ( 

a* 
++o (I v I-I), (3.10) 

Assuming now that 

v = Tt?‘Q ( - ‘la 31 g 8 < ‘/*al) _ 

holds along the arc rT and using (3.10), we find that 

A5 (sh a, sh z’, T) = vchh ch eL, 
I 

sin (a’ - a) T sin (a’ + a) T 
7C(U’- a) + n(a’ + a) + 

+ o(I) 1 - e-w-- 
1%’ - a) T -i- 0 (1) 

1 _ e-w+a)T 

(a’ + a) T @da’<001 

Stlboeqnent arguments are analogous to those given in [3] end are, therefore, omitted. 
Let ua now put x =,&a and y = ah u ’ in (3.9); using (3.11) we can represent the inte- 

gralo taken over the intervala (0, x) and (r, W) aa eume of other integrals. For example, 
r il 

s 
f (y) Kl (z, y, T) dy = 

s 
f (sh a’) Kl (sh a, sh u’, 2’) ch a’ C&Z’ I: 

0 0 

ch a’ 

( ) 

‘I* sin (a - a’) T 
cha a- a’ 

&a’ + 

+O(i)f l/(aha')l (c$$-)“’ ‘GT:T;’ da’+ 

0 

D 

f 

_ e-(ata’)T 

fo(U (a + CX’) T d” 
0 

From the conditiona impolred on the fbction f(x) we find, in accordance with the Diricb- 
let theorem, 

The rem&&g intsipals tend to sero with increasing T (we must, however, adopt a celc 
teiu prouedure when tbs intep~al in quomtion ham the difference a - a' appearing in the 
denominator, l &neighborhood of Q moat be taken and T increamed without bounds, with 8 
kept *ufficiently small). 
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x 

;im_ f(y)&(x, Y, ndY=+--0) s 
0 

(3.12) 

Similarly, we can show that 

co 

;z 
s 

f (~1 Ke (2, Y, T) dy = ; f (z + 0) (3.13) 
x 

ThUS 

;imJ G”, 4 - ‘/z [I (2 + 0) + f (I - WI - (3.14) 

/t 1% F-l)1 
-_ 

.s 2 
n=o 

(m - l/z - 2n) r Cm - 2n) r (2n + 1) (Pm$_Zn (z) v”f (?/I cP~,*-zn (w) dy. 

b 
which proves the validity of (1.1). 

4. Examples. Let us consider the expansion of f(x) = (x2 + 1)‘s l (s > H). Conditiona 

of the theorem will be fulfilled, and the expansion (1.1) will therefore exist. Computation 

of the integrals over the variable y can be performed by replacing 4,“’ (y) with the relawnt 
expression given by (2.2). The required expansion has the form 

1% m-l)] 
X {2 2 

n=o 
(m-+-2n) r(n++)r(m-n)r (t-f +t-n)x 

n-l 

O<Z<T s-> l/a, m =O, 1,2,. . . (4.1) 
A derivation of the potential of a point mourcs in terma of the eigenfunctions of the boun- 

dary value harmonic problem for a hyperboloid of revolution of one aheet, can serve aa 

another example of application of the above theorems. We omit, however, the final exprar 

sion in view of its complexity. 

BIBLIUGBAPHY 

1. Weyl, H., Geber gewahnliche lineare Differentialgleichungen mit sing&en St&en 

und ihre Eigenfunktionen. Nachr. Kiinigl. Gesellschaft Wiseenschaften Ggttingen, 

1910. 

2. Tit&marsh, E.Ch., Expansions in Terms of the Eigenfunctions, Connected with Second 

Order Differential Equations. M., (Russian translation) Izd. inostr. lit., 1960. 
3. Lebedev, N.N. and Skal’skaia, I.P., Integral expansion of an arbitrary function in terms 

of spherical functions. PMM Vol. 30, No. 2, 1966. 

4. Lebedev, N.N. and Skal’skaia, I.P., Some boundary value problems of mathematical 
physics and of the theory of elasticity for a hyperboloid of revolution of one sheet. 

PMM Vol. 30, No. 5, 1966. 

5. Bateman, G. and Erdelyi, A., Higher Transcendental Functions. The Hypargeometric 

Function. Legendre Functiona., M., Nauka, 1%5. 

Translated by L.K. 


